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This book presents the development of Fano-based techniques. The characteristic 
properties of various wave processes are revealed in the book by studying interference 
phenomena. It is explained that the interaction of discrete (localized) states with a 
continuum of propagation modes leads to Fano interference effects in transmission. 
Novel coherent effects such as bound states in the continuum accompanied by 
collapse of Fano resonance are considered. Being originated in atomic physics, Fano 
resonances have become one of the most appealing phenomena of wave scattering in 
optics, microwaves, and terahertz techniques. The generation of extremely strong and 
confined fields at a deep subwavelength scale, far beyond the diffraction limit, plays a 
central role in modern plasmonics, magnonics, in photonic and metamaterial 
structures. Fano resonance effects take advantage of the coupling of these bound 
states with a continuum of radiative electromagnetic waves. With their unique 
physical properties and unusual combination of classical and quantum structures, 
Fano resonances have an application potential in a wide range of fields, from 
telecommunication to ultrasensitive biosensing, medical instrumentation and data 
storage. This book provides the multifaceted understanding required for these 
multidisciplinary challenges. The book contains contributions of international experts 
and covers the essential aspects of Fano-resonance effects, including theory, modeling 
and design, proven and potential applications in practical devices, fabrication, 
characterization and measurement.  
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Chapter 1
Fano resonances in plasmonic core-shell
particles and the Purcell effect

Tiago José Arruda, Alexandre Souto Martinez, Felipe A. Pinheiro, Romain
Bachelard, Sebastian Slama, and Philippe Wilhelm Courteille

Abstract Despite a long history, light scattering by particles with size comparable
with the light wavelength still unveils surprising optical phenomena, and many of
them are related to the Fano effect. Originally described in the context of atomic
physics, the Fano resonance in light scattering arises from the interference between
a narrow subradiant mode and a spectrally broad radiation line. Here, we present
an overview of Fano resonances in coated spherical scatterers within the framework
of the Lorenz-Mie theory. We briefly introduce the concept of conventional and
unconventional Fano resonances in light scattering. These resonances are associated
with the interference between electromagnetic modes excited in the particle with
different or the same multipole moment, respectively. In addition, we investigate the
modification of the spontaneous-emission rate of an optical emitter at the presence
of a plasmonic nanoshell. This modification of decay rate due to electromagnetic
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2 Tiago José Arruda et al.

environment is referred to as the Purcell effect. We analytically show that the Purcell
factor related to a dipole emitter oriented orthogonal or tangential to the spherical
surface can exhibit Fano or Lorentzian line shapes in the near field, respectively.

1.1 Introduction

The Fano resonance, discovered in the realm of atomic physics by U. Fano in
1961 [1], is one of the hallmarks of interference in open quantum systems. This
interference effect was originally conceived as an interference between a transition
to a bound state, coupled weakly to a continuum, and a transition directly to the
same continuum [1]. As a signature of quantum interference, the Fano effect has
been extensively investigated in electronic transport at the nanoscale, in systems
such as quantum dots, quantum wires, and tunnel junctions [2].

Being a wave interference phenomenon, Fano resonances are also present in clas-
sical optics and mechanics, where it can be understood as weak coupling between
two classical oscillators driven by an external harmonic force [2, 3]. With the advent
of metamaterials and plasmonic nanostructures, the Fano effect has recently become
an important tool for tailoring and controlling electromagnetic mode interactions at
subwavelength scale [4, 5]. In plasmonics, it generally arises from the interference
between a localized surface plasmon resonance and a spectrally broad superradi-
ant mode acting as a background radiation [2]. Due to the sharpness of the Fano
asymmetric line shape, systems exhibiting the Fano effect are highly sensitive to
the local dielectric environment. As a consequence, in plasmonic systems the Fano
effect has been explored in the development of optical sensors, nonlinear devices,
and low-threshold nanoscopic lasers [5].

Within the Lorenz-Mie scattering theory, the Fano effect results from the in-
terference between electromagnetic modes excited in the scatterer with multipole
moments of different orders (e.g., dipole-quadrupole interference) [5] or same or-
ders (e.g., dipole-dipole interference), which is sometimes referred to as unconven-
tional Fano resonance [6, 7, 8]. In contrast to the conventional Fano resonance [9],
the unconventional Fano effect in light scattering does not depend on the scatter-
ing direction, and it can be realized, e.g., with layered [7, 8, 10, 11, 12] or high-
index [6, 13, 14, 15] particles.

Here, we study the influence of an unconventional Fano resonance of a plasmonic
nanoshell on a single optical emitter in its vicinity [16]. The presence of a nanostruc-
ture is known to enhance the spontaneous-emission rate of optical emitters, which
is generally referred to as the Purcell effect [17, 18, 19, 20, 21]. Many theoret-
ical and experimental approaches have been developed to maximize [22, 23, 24]
or minimize [25, 26] the spontaneous-emission rate by changing the electromag-
netic environment with engineered nanostructures. In this chapter, we are interested
in describing the connection between the Fano resonance usually observed in the
Purcell factor [27] and the unconventional Fano resonance exhibited by plasmonic
nanoshells in light scattering [7, 14, 16].
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1 Fano resonances in plasmonic core-shell particles and the Purcell effect 3

This chapter is organized as follows. We recall the main analytical expressions of
the Lorenz-Mie theory for light scattering by coated spherical particles in Sec. 1.2.
The concept of conventional and unconventional Fano resonances in plasmonic
nanoshells are briefly introduced. In Sec. 1.3, we study the decay rates of single
dipole emitters in the vicinity of plasmonic nanoshells. Analytical expressions con-
necting Fano resonances in light scattering and the Purcell factor of dipole emitters
are derived. Finally, in Sec. 1.4, we summarize our main results and contents of this
chapter.

1.2 Light scattering by core-shell spheres: conventional and
unconventional Fano resonances

Light scattering by small particles is a fundamental topic in classical electrody-
namics that has been studied and treated by several researchers, with applications
ranging from meteorology and astronomy to biology and medicine [28]. A com-
plete analytic solution for homogeneous dielectric spheres with arbitrary radius was
first derived, in an independent way, by L.V. Lorenz [29] and G. Mie [30] more
than a century ago. This solution, which is widely known as the Lorenz-Mie theory,
is based on the expansion of the electromagnetic fields in terms of spherical wave
functions [28]. An interesting generalization of this theory is the case of a spheri-
cal scatterer composed of materials with different optical properties, with the core-
shell geometry being the simplest one. Historically, the standard Lorenz-Mie theory,
which deals with homogeneous spheres, was extended to single-layered spheres by
Aden and Kerker [31] in 1951. With the advent of plasmonics and metamaterials,
core-shell systems have been extensively applied for experimental and theoretical
investigations, such as the plasmonic cloaking technique [32, 33], comb-like scat-
tering response [10], tunable light scattering [34, 35], fluorescence enhancement of
optical emitters [16], and Fano resonances [36]. Indeed, the presence of cavities or
dielectric materials inside metal-based nanostructures strongly modifies the scatter-
ing response due to the so-called plasmon hybridization [37].

In this section, we briefly recall the main analytical expressions used in the
Lorenz-Mie theory for single-layered spheres. Our aim is to introduce the concept of
the Fano resonance in light scattering by plasmonic nanoshells, which will be further
applied to the spontaneous-emission rate of single dipole emitters in Sec. 1.3. With
this aim, we present the complete theoretical framework in Sec. 1.2.1. The discus-
sion on plasmonic Fano resonances is treated in Sec. 1.2.2 for a coated nanosphere
composed of a silicon (Si) core and a silver (Ag) nanoshell.
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4 Tiago José Arruda et al.

1.2.1 The Lorenz-Mie theory for single-layered spheres

Let us consider a coated sphere interacting with a plane wave [E(r),H(r)]e−ıωt ,
where ω is the angular frequency. The coated sphere is composed of a spherical
core with radius a and a single, center-symmetric shell with radius b, as depicted in
Fig. 1.1. The involved media are assumed to be linear, homogeneous and isotropic.
In this case, the optical properties of media are described by a scalar electric permit-
tivity εp and a magnetic permeability µp, with label p = 1 for the core (0≤ r ≤ a),
p = 2 for the shell (a≤ r≤ b) and p = 0 for the surrounding medium (r≥ b), which
is assumed to be the vacuum. At optical frequencies, naturally occurring media are
usually non-magnetic: µ1 = µ2 = µ0.

r
z

0

y

x

a b1

2

Fig. 1.1 A non-magnetic core-shell sphere interacting with an electromagnetic plane wave. The
inner sphere has radius a and electric permittivity ε1, whereas the outer sphere has radius b and
electric permittivity ε2. The surrounding medium is the vacuum ε0. An electromagnetic plane wave
propagating along the z axis impinges on the sphere from below.

The macroscopic Maxwell’s equations associated with the system illustrated
in Fig. 1.1 provide the vector Helmholtz equation (∇2 + k2)[E(r),H(r)] = (0,0),
where k = 2π/λ is the wave number and λ is the wavelength of the light in each
medium p = {0,1,2}. The interested reader is refereed to Ref. [28] for a com-
plete and detailed solution of this vector equation. Since the sphere material is
non-optically active [38], without loss of generality, we consider the polarization
of the incident wave along the x-direction. In terms of spherical wave functions, the
incident and scattered electric fields (r ≥ b) can be cast as
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1 Fano resonances in plasmonic core-shell particles and the Purcell effect 5

Ein(r,θ ,ϕ) = −
1
kr

∞

∑̀
=1

E`

{
ıcosϕ sinθ j`(kr)`(`+1)π`(cosθ)êr

−cosϕ
[
π`(cosθ)ψ`(kr)− ıτ`(cosθ)ψ ′`(kr)

]
êθ

−sinϕ
[
ıπ`(cosθ)ψ ′`(kr)− τ`(cosθ)ψ`(kr)

]
êϕ

}
, (1.1)

Esca(r,θ ,ϕ) =
1
kr

∞

∑̀
=1

E`

{
ıcosϕ sinθa`h

(1)
` (kr)`(`+1)π`(cosθ)êr

−cosϕ
[
b`π`(cosθ)ξ`(kr)− ıa`τ`(cosθ)ξ ′`(kr)

]
êθ

−sinϕ
[
ıa`π`(cosθ)ξ ′`(kr)−b`τ`(cosθ)ξ`(kr)

]
êϕ

}
, (1.2)

where k = ω√ε0µ0, E` = ı`E0(2`+ 1)/[`(`+ 1)], π`(cosθ) = P1
` (cosθ)/sinθ ,

τ`(cosθ) = dP1
` (cosθ)/dθ , with P1

` being the associated Legendre function of first
order. The coefficients a` and b` are the transverse magnetic (TM) and transverse
electric (TE) Lorenz-Mie coefficients, respectively, and are determined from bound-
ary conditions. For center-symmetric coated spheres, these coefficients read [28,
39]:

a` =
ñ2ψ ′`(kb)−ψ`(kb)A`(n2kb)
ñ2ξ ′`(kb)−ξ`(kb)A`(n2kb)

, (1.3)

b` =
ψ ′`(kb)− ñ2ψ`(kb)B`(n2kb)
ξ ′`(kb)− ñ2ξ`(kb)B`(n2kb)

, (1.4)

with the auxiliary functions

A`(n2kb) =
ψ ′`(n2kb)−A`χ ′`(n2kb)
ψ`(n2kb)−A`χ`(n2kb)

, (1.5)

B`(n2kb) =
ψ ′`(n2kb)−B`χ ′`(n2kb)
ψ`(n2kb)−B`χ`(n2kb)

, (1.6)

A` =
ñ2ψ`(n2ka)ψ ′`(n1ka)− ñ1ψ ′`(n2ka)ψ`(n1ka)
ñ2χ`(n2ka)ψ ′`(n1ka)− ñ1χ ′`(n2ka)ψ`(n1ka)

, (1.7)

B` =
ñ2ψ ′`(n2ka)ψ`(n1ka)− ñ1ψ`(n2ka)ψ ′`(n1ka)
ñ2χ ′`(n2ka)ψ`(n1ka)− ñ1χ`(n2ka)ψ ′`(n1ka)

, (1.8)

where the functions ψ`(z) = z j`(z), χ`(z) =−zy`(z) and ξ`(z) = ψ`(z)− ıχ`(z) are
the Riccati-Bessel, Riccati-Neumann and Riccati-Hankel functions, respectively,
with j` and y` being the spherical Bessel and Neumann functions [28]. The refrac-
tive and impedance indices are np =

√
εpµp/(ε0µ0) and ñp =

√
εpµ0/(ε0µp), with

p = {1,2} [39]. For non-magnetic materials (µp = µ0), one has ñp = np [40]. The
solution for a homogeneous sphere of radius b can be readily obtained by setting
ε1 = ε2 and µ1 = µ2, i.e., A` = 0 = B`. It is worth mentioning that these Lorenz-Mie
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coefficients can be trivially generalized to the case of center-symmetric multilayered
spheres [41].

Analogously, within the core (0≤ r ≤ a) and shell (a≤ r ≤ b) regions, we have
the electric fields [39, 42]

E1(r,θ ,ϕ) = −
1

n1kr

∞

∑̀
=1

E`

{
ıcosϕ sinθd` j`(n1kr)`(`+1)π`(cosθ)êr

+cosϕ
[
c`π`(cosθ)ψ`(n1kr)− ıd`τ`(cosθ)ψ ′`(n1kr)

]
êθ

+sinϕ
[
ıd`π`(cosθ)ψ ′`(n1kr)− c`τ`(cosθ)ψ`(n1kr)

]
êϕ

}
, (1.9)

E2(r,θ ,ϕ) = −
1

n2kr

∞

∑̀
=1

E`

{
ıcosϕ sinθg` j`(n2kr)`(`+1)π`(cosθ)êr

+ıcosϕ sinθw`y`(n2kr)`(`+1)π`(cosθ)êr

+cosϕ
[

f`π`(cosθ)ψ`(n2kr)− ıg`τ`(cosθ)ψ ′`(n2kr)
]

êθ

−cosϕ
[
v`π`(cosθ)χ`(n2kr)− ıw`τ`(cosθ)χ ′`(n2kr)

]
êθ

+sinϕ
[
ıg`π`(cosθ)ψ ′`(n2kr)− f`τ`(cosθ)ψ`(n2kr)

]
êϕ

−sinϕ
[
ıw`π`(cosθ)χ ′`(n2kr)− v`τ`(cosθ)χ`(n2kr)

]
êϕ

}
,(1.10)

respectively. In terms of the auxiliary functions defined in Eqs. (1.7) and (1.8), the
Lorenz-Mie coefficients c`, d`, f`, g`, v` and w` read [28, 39]

c` =
n1 f`

n2ψ`(n1ka)
[ψ`(n2ka)−B`χ`(n2ka)] , (1.11)

d` =
n1g`

n2ψ ′`(n1ka)

[
ψ ′`(n2ka)−A`χ ′`(n2ka)

]
, (1.12)

f` =
ın2

[ψ`(n2kb)−B`χ`(n2kb)]
[
ξ ′`(kb)− ñ2ξ`(kb)B`(n2kb)

] , (1.13)

g` =
ın2

[ψ`(n2kb)−A`χ`(n2kb)]
[
ñ2ξ ′`(kb)−ξ`(kb)A`(n2kb)

] , (1.14)

v` = B` f`, (1.15)
w` = A`g`. (1.16)

Equations (1.1)–(1.16) are the complete Lorenz-Mie solution for center symmet-
ric core-shell spheres [28]. The corresponding magnetic field H(r) can be straight-
forwardly obtained from Eqs. (1.1), (1.2), (1.9), and (1.10) by Maxwell’s curl equa-
tions. In the following, we discuss the cross sections and internal field intensities in
the context of Fano resonances in plasmonic nanoshells.
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1 Fano resonances in plasmonic core-shell particles and the Purcell effect 7

1.2.2 Fano resonances in optical cross sections

The cross sections of a spherical particle can be calculated exactly from the net
rate of electromagnetic energy crossing an imaginary surface at the far field (for
details, see Ref. [28]). From the standard Lorenz-Mie theory, by using Eqs. (1.1) and
(1.2), the extinction, scattering and absorption cross sections of a spherical particle
irradiated by plane waves are, respectively,

σext =
2π
k2

∞

∑̀
=1
(2`+1)Re(a`+b`) , (1.17)

σsca =
2π
k2

∞

∑̀
=1
(2`+1)

(
|a`|2 + |b`|2

)
, (1.18)

σabs = σext−σsca, (1.19)

where a` and b` carry the dependence on the geometrical and optical parameters
of the scatterer, and are defined in Eqs. (1.3) and (1.4) for a single-layered core-
shell sphere. Equations (1.17)–(1.19) are calculated from averaging over all possible
directions and polarizations. By considering the backward (θ = π) and forward (θ =
0) directions, we obtain

σback =
π
k2

∣∣∣∣∣
∞

∑̀
=1
(2`+1)(−1)` (a`−b`)

∣∣∣∣∣

2

, (1.20)

σforward =
π
k2

∣∣∣∣∣
∞

∑̀
=1
(2`+1)(a`+b`)

∣∣∣∣∣

2

, (1.21)

which are the differential backward and forward scattering cross sections, respec-
tively. Usually the optical cross sections are calculated in units of the geometrical
cross section σg = πb2, where b is the effective radius of the spherical scatterer.

From Eqs. (1.17)–(1.21), it is clear that one can achieve interferences between
different electric and magnetic scattering amplitudes (namely, a` and b`) only for
directional scattering, e.g., σback and σforward [9]. Of particular interest is the case of
light scattering by small plasmonic spheres (kb≤ 1). In this limiting case, the dipo-
lar Rayleigh scattering (`= 1) plays the role of a broad spectral resonance, whereas
the localized surface plasmon resonance, e.g., quadrupole (` = 2) or higher order
resonance, plays the role of a narrow spectral line interacting with a broad spectral
line. As a result, in the vicinity of the narrow plasmon resonance there is a π-phase
jump, leading to the coexistence of constructive and destructive interferences with
the broad dipole resonance. This interference between the electric scattering ampli-
tudes a1 and a2 is described by a characteristic asymmetric line shape, known as the
conventional Fano resonance.

68



8 Tiago José Arruda et al.

1.2.2.1 Unconventional Fano resonances in plasmonic nanoshells

Recently, other mechanisms of Fano-like resonances have been described in light
scattering by small particles relative to the light wavelength. For instance, Fano reso-
nances were shown to occur beyond the applicability of the Rayleigh approximation
in high-index particles, where the interference between electromagnetic modes with
the same multipole moment (e.g., dipole-dipole interference) is crucial [6, 13, 15].
These Fano-like resonances also manifest themselves in plasmonic layered particles
with moderate permittivities [10], even in the Rayleigh scattering approximation [7].
Since these interferences occur in the total scattering cross section σsca and, hence,
do not depend on the scattering direction, they were named unconventional Fano
resonances [6].

To picture these concepts, let us consider a core-shell nanoparticle consisting
of a silicon (Si) core with refractive index n1 = 3.5 and radius a = 60 nm coated
with a dispersive silver (Ag) nanoshell with radius b = 90 nm. The Ag dielectric
permittivity is well described by the generalized Drude model [43, 44]

εAg(ω)

ε0
= εint−

ω2
p

ω(ω + ıγ)
, (1.22)

where εint = 3.7 is a contribution due to interband transitions, ωp = 9.2 eV (≈
2π×2.2×1015 Hz) is the plasmon frequency associated with conduction electrons,
and γ = 0.02 eV is the effective dumping rate due to material losses. These Drude
parameters for Ag are valid below the frequency of onset for interband transitions:
ω/ωp < 0.42 [44]. These are the optical and geometric parameters that we consider
for numerical calculations throughout this chapter.

Figure 1.2 shows the plots of the optical cross sections defined in Eqs. (1.17)–
(1.21) as a function of the frequency of the incident electromagnetic wave. For the
frequency range 0.135ωp < ω < 0.225ωp, the corresponding size parameters of the
core-shell sphere are 0.56< kb< 0.95, so we can restrict our discussion on electric
multipole moments up to `= 2 (quadrupole). Also, since the involved materials are
non-magnetic with moderate permittivities, one has b` ≈ 0 for kb< 1.

In the main plot of Fig. 1.2, one can clearly see that σsca presents a Fano line
shape, where the dipole-dipole (|a1|2) resonance occurs at ω ≈ 0.170ωp and the
antiresonance (Fano dip) occurs at ω ≈ 0.175ωp. In this same frequency range,
the absorption cross section σabs exhibits a Lorentzian line shape [45]. In addi-
tion, a quadrupole-quadrupole (|a2|2) resonance also shows up at ω ≈ 0.208ωp, but
only contributes to the absorption cross section. However, the overlap of the narrow
quadrupole (`= 2) resonance and the broad dipole resonance (`= 1) leads to a Fano
line shape in the differential scattering cross sections, see the inset of Fig. 1.2.

The unconventional Fano resonance observed in σsca and σext can be explained
by the interference between out of phase electric fields within the plasmonic
nanoshell. Recently, Tribelsky and Miroshnichenko [15] have shown that the Fano
line shape associated with high-index spherical particles can be calculated exactly
within the Lorenz-Mie theory. Here, we generalize their result to the case of a
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Fig. 1.2 Optical cross sections in the light scattering by a (Si) core-shell (Ag) nanosphere in free
space. The dielectric core has radius a = 60 nm and refractive index n1 = 3.5, whereas the plas-
monic shell has radius b= 90 nm and electric permittivity ε2 = εAg(ω) [Eq. (1.22)]. The plot shows
the scattering (σsca), absorption (σabs), and extinction (σext) cross sections (in units of πb2) as a
function of the frequency ω (in units of Ag plasmon frequency ωp). An unconventional Fano res-
onance can be observed in σsca (ω ≈ 0.170ωp) associated with the dipole-dipole interference a1a∗1
excited in the shell, where a1 is the electric Lorenz-Mie coefficient. The inset shows two conven-
tional Fano resonances in the differential backward (σback) and forward (σforward) scattering cross
sections at ω ≈ 0.208ωp. These Fano resonances are related to the dipole-quadrupole interference
a1a∗2 at the backward and forward directions, respectively.

core-shell sphere. Since we are not interested in magnetic resonances (namely,
b`) [40, 46], we restrict our discussion on the electric scattering amplitude a`. In-
deed, the magnetic case is completely analogous and the interested reader is referred
to Ref. [15].

Following Ref. [15], we rewrite the electric scattering coefficient a`:

a` =
F̀

F̀ + ıG`
=

ζ`(ω)+q`
ζ`(ω)+q`− ı [ζ`(ω)q`−1]

, (1.23)

with the new auxiliary functions being

F̀ = n2ψ ′`(kb) [ψ`(n2kb)−A`χ`(n2kb)]

−ψ`(kb)
[
ψ ′`(n2kb)−A`χ ′`(n2kb)

]
, (1.24)
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G` = −n2χ ′`(kb) [ψ`(n2kb)−A`χ`(n2kb)]

+χ`(kb)
[
ψ ′`(n2kb)−A`χ ′`(n2kb)

]
, (1.25)

where ζ`(ω) ≡ ζ ′`(ω) + ıζ ′′` (ω) and q` is the Fano asymmetry parameter. Here,
ζ ′ = Re(ζ ) and ζ ′′ = Im(ζ ) (not to be confused with derivatives with respect to the
argument). Although the demonstration is not trivial [15], one can formally show
that

ζ`(ω) =
F̀ ψ ′`(kb)−G`χ ′`(kb)

ψ ′`(n2kb)−A`χ ′`(n2kb)
, (1.26)

q` =
χ ′`(kb)
ψ ′`(kb)

. (1.27)

If the sphere is lossless, one has ζ ′′` (ω) = 0 and |a`|2 = (ζ ′`+q`)2/[(1+q2
`)(ζ

′2
` +

1)], i.e., |a`|2 is a normalized Fano lineshape as a function of ζ ′`. These expressions
agree with Ref. [15] for A` = 0 (homogeneous sphere).

Considering only the dipole scattering resonance (`= 1) and defining qLM ≡ q1
and ζ (ω)≡ ζ1(ω), we finally have

σsca ≈
6π

k2
(
1+q2

LM

)





[
ζ ′(ω)

1+ζ ′′(ω)
+

qLM

1+ζ ′′(ω)

]2

+

[
ζ ′′(ω)

1+ζ ′′(ω)

]2

[
ζ ′(ω)

1+ζ ′′(ω)

]2

+1




. (1.28)

In the vicinity of a Fano resonance, one can use the approximation ζ ′`(ω)/[1 +
ζ ′′(ω)]≈ (ω−ωres)/Ω , where Ω is associated with the curve linewidth. The func-
tion ζ ′′(ω) has a very complicated analytical expression, and it can be estimated
from the dipole resonance [ζ ′(ωres) = 0]: σ (max)

sca = 6π(q2 + ζ ′′2)/[(k2(1+ q2)(1+
ζ ′′2)]. From Fig. 1.2, one has σmax

sca (ωres)≈ 5.9πb2 for ωres ≈ 0.170ωp. Indeed, we
have used Eq. (1.28) to fit the scattering cross section in Fig. 1.2. For our set of pa-
rameters, the effective Fano asymmetry parameter is qLM/(1+ζ ′′)≈−2.81, where
qLM ≈−3.84 and ζ ′′ ≈ 0.368.

1.2.2.2 Off-resonance field enhancement in plasmonic nanoshells

The presence of Fano-like resonances in Lorenz-Mie theory is associated with very
interesting optical phenomena, such as the formation of optical vortices and sad-
dle points in the energy flow around particles [9], enhanced light scattering re-
sponse [34], and off-resonance field enhancement within core-shell scatterers [47,
48]. Indeed, as can be observed in Fig. 1.3, both dipole and quadrupole scattering
resonances discussed above are associated with saddle points in the time-averaged
energy flow S(r) = Re[E(r)×H∗(r)]/2 in the vicinity of the Ag nanoshell, where
the local electromagnetic field (E,H) is calculated from Eqs. (1.1) and (1.2).
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Fig. 1.3 Time-averaged energy flow (normalized Poynting vector field) in the vicinity of a (Si)
core-shell (Ag) nanosphere for dipole (ω ≈ 0.170ωp) and quadrupole (ω ≈ 0.208ωp) scattering
resonances. The dielectric core has refractive index n1 = 3.5 and radius a = 60 nm, whereas the
Ag nanoshell [Eq. (1.22)] has radius b = 90 nm. The xz plane shows the presence of a saddle point
in the energy flow in the z-axis around z ≈ 1.25b for dipole resonance (a) and two saddle points
for quadrupole resonance (b) around z ≈ ±1.20b. The yz plane shows singular points along the y
direction for dipole (c) and quadrupole (d) resonances.

To show the effect of off-resonance field enhancement, we calculate the corre-
sponding electric field intensity 〈|E|2〉within the coated sphere [7, 42, 49]. Here, the
operator 〈· · ·〉 = (1/4π)

∫ 1
−1 d(cosθ)

∫ 2π
0 dϕ(· · ·) is the angle average over 4π . Us-

ing the exact expression for the electric fields within the core (0≤ r ≤ a) and shell
(a≤ r ≤ b), Eqs. (1.9) and (1.10), we obtain the angle-averaged intensities [7, 42]

〈|E1(r)|2〉
|E0|2

=
1
2

∞

∑̀
=1

{
(2`+1)|c`|2| j`(n1kr)|2

+|d`|2
[
`| j`+1(n1kr)|2 +(`+1)| j`−1(n1kr)|2

]}
, (1.29)
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Fig. 1.4 The angle-averaged electric field intensity inside a (Si) core-shell (Ag) nanosphere in
free space, as depicted in Fig. 1.1, as a function of the distance from the center of the scatterer
to its surface. The dielectric core has radius a = 60 nm and refractive index n1 = 3.5, whereas
the plasmonic shell has radius b = 90 nm and electric permittivity ε2 = εAg(ω) [Eq. (1.22)]. The
maximum electric field intensity stored inside the scatterer occurs at the dipole resonance (ω ≈
0.170ωp). The intensity at the Fano dip (ω ≈ 0.175ωp) is comparable to and even greater than the
intensity at the quadrupole resonance (ω ≈ 0.208ωp) inside the core.

〈|E2(r)|2〉
|E0|2

=
1
2

∞

∑
n=1

{
(2`+1)

[
| f`|2| j`(n2kr)|2 + |v`|2|y`(n2kr)|2

]

+|g`|2
[
`| j`+1(n2kr)|2 +(`+1)| j`−1(n2kr)|2

]

+|w`|2
[
`|y`+1(n2kr)|2 +(`+1)|y`−1(n2kr)|2

]

+2Re
[
(2`+1) f`v∗` j`(n2kr)y`(n∗2kr)

+g`w∗`
[
` j`+1(n2kr)y`+1(n∗2kr)

+(`+1) j`−1(n2kr)y`−1(n∗2kr)
]]
}
, (1.30)

where we have used the relations [28]: (2`+1)
∫ 1
−1 d(cosθ)(π`π`′+τ`τ`′) = 2`2(`+

1)2δ``′ ,
∫ 1
−1 d(cosθ)(π`τ`′+τ`π`′)= 0, and (2`+1)

∫ 1
−1 d(cosθ)π`π`′ sin2 θ = 2`(`+

1)δ``′ , with δ``′ being the Kronecker delta. Note that the electric field intensity
〈|E2|2〉 inside the shell is a quantity sensitive to interference between different elec-
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1 Fano resonances in plasmonic core-shell particles and the Purcell effect 13

tromagnetic modes, i.e., f`v∗` and g`w∗` . This is due to the interference between par-
tial waves generated from Bessel or Neumann functions within the spherical shell.
Indeed, one can show that these interferences are related to the unconventional Fano
resonance observed in the total scattering cross section [7].

In Fig. 1.4, we show how the electric field intensity 〈|E|2〉 depends on the dis-
tance from the center of the sphere to its surface r = b. We study three main frequen-
cies obtained from σsca plotted in Fig. 1.2: the dipole resonance (ω ≈ 0.170ωp), the
Fano dip (ω ≈ 0.175ωp), and the quadrupole resonance (ω ≈ 0.208ωp). We verify
that even at the Fano dip (with σsca ≈ 0) it is possible to obtain a large field intensity
enhancement inside the (Si) core-shell (Ag) nanosphere. Indeed, the intensity inside
the lossless dielectric core (r < a) is even greater than the intensity obtained for the
quadrupole resonance, which characterizes an off-resonance field enhancement at
the subwavelength scale.

In the following, we use the ideas presented in this section to study how the Fano
resonances are connected to the enhancement or suppression of the spontaneous-
emission rate of optical emitters near plasmonic nanostructures.

1.3 Spontaneous emission of a dipole emitter near a plasmonic
nanoshell

Plasmonic surfaces are known to enhance or quench the fluorescence response of
quantum emitters due to near- and far-field interactions between emitter and sur-
face [17, 50]. This modification of the spontaneous-emission rate of a quantum
emitter due to the electromagnetic environment is generally refereed to as the Purcell
effect [27]. Historically, this effect was first described by E.M. Purcell in the context
of nuclear magnetic resonance [51], and was followed by the reports of K.H. Drex-
hage on the effects of metallic surfaces on fluorescence decay rate [52] and R.R.
Chance et al. concerning molecular fluorescence near interfaces [53]. At present,
this effect is widely used in several applications involving the enhancement and
controlling of light emission and absorption at nanoscale, such as nanoplasmonic
devices, nanoscale sensors, and the design of novel optical antennas in surface en-
hanced spectroscopy and microscopy [27, 50, 54].

This section is devoted to the classical electrodynamics theory that describes the
interaction between a single dipole emitter and a coated nanosphere. In quantum
electrodynamics, the standard approach to calculate the variation on linewidth and
energy level shift of a quantum emitter due to boundary conditions is the first-order
perturbation theory [55]. In the weak coupling regime, the excited emitter decays
exponentially to its ground state with life time τ = 1/Γ . A remarkable feature of this
approximation is that the decay rate Γ of a quantum emitter in the vicinity of a body,
normalized by the spontaneous-emission rate in free space Γ0, can be calculated in
the framework of classical electrodynamics [50, 56, 57, 58]. In this case, the excited
emitter is modeled as a point dipole source interacting with local electric field at the
same position as the quantum emitter, and the Purcell factor Γ /Γ0 is derived from the
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radiated power normalized to free space [18, 59]. This equivalence between classical
and quantum calculations in the weak coupling regime occurs due to the fact that
both the mode functions of the quantized electromagnetic fields and the classical
electric field are derived from the same vector Helmholtz equation [57, 60].

In the following, we present in Sec. 1.3.1 an overview of the fully classical theory
used to derive the spontaneous-emission rates of dipole emitters in close proximity
of spheres. In Sec. 1.3.2, we calculate the influence of near-field interactions on
the radiation efficiency of a dipole emitter near a plasmonic nanoshell. The relation
between Fano resonances and the spontaneous-emission rate is discussed in detail
in Sec. 1.3.3. It is worth emphasizing that the final expressions for Γ /Γ0 derived
in Sec. 1.3.1 agree with the first-order perturbation theory in the weak coupling
regime [18, 27].

1.3.1 Radiative and non-radiative decay rates of a dipole emitter

Let us consider the same geometry investigated in Sec. 1.2: a core-shell sphere
of inner radius a and outer radius b in free space (ε0,µ0). The sphere has opti-
cal properties (ε1,µ1) for the core (r ≤ a) and (ε2,µ2) for the shell (a ≤ r ≤ b),
as depicted in Fig. 1.5. Both core and shell consisting of isotropic and linear ma-
terials, and may have absorption and dispersion that satisfies the Kramers-Kronig
relations [25, 61]. In addition, we consider a single dipole emitter located at posi-
tion r′, with r′ = |r′| > b. The dipole emitter is characterized by its electric dipole
moment d0 and its emission frequency ω . The electric field emitted by this elec-
tric dipole in the region b < r < r′ can be expanded in terms of vector spherical
harmonics [18, 59] and reads

Ed0
dip(r,θ ,ϕ) =

∞

∑̀
=1

`

∑
m=−`

1
`(`+1)

{
α`m

1
k

∇×
[

j`(kr)L̂Y`m(θ ,ϕ)
]

+β`m j`(kr)L̂Y`m(θ ,ϕ)
}
, (1.31)

α`m = −ık2d0 ·∇′×
[
h(1)` (kr′)L̂′Y ∗`m(θ

′,ϕ ′)
]
, (1.32)

β`m = −ık3h(1)` (kr′)d0 · L̂′Y ∗`m(θ ′,ϕ ′), (1.33)

where k = ω√ε0µ0, Y`m(θ ,ϕ) is the spherical harmonics, and L̂ = −ır×∇ is the
angular momentum operator [28]. The derivation of Eq. (1.33) can be found in
Ref. [62]. Here, the superindex d0 is just a reminder that the emitted electromag-
netic fields depend on the dipole orientation. Also, Ed0

dip(r) for r > r′ can be readily

obtained from Eqs. (1.31)–(1.33) by interchanging j` with h(1)` . Here, the choice

of a Hankel function of the first kind h(1)` for outgoing waves is closely related to
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Fig. 1.5 An optical dipole emitter in the vicinity of a core-shell sphere in free space. The inner
sphere has radius a and electric permittivity ε1, whereas the outer sphere has radius b and electric
permittivity ε2. The surrounding medium is the vacuum ε0. The optical emitter is located at the
position r′, with |r′|= r′ = b+∆r. There are two basic orientations for the electric dipole moment
d0 associated with the dipole emitter: it can be orthogonal (d⊥0 ) or tangential (d||0) to the spherical
surface. Any arbitrary dipole moment orientation in relation to the sphere can be decomposed in
orthogonal and tangential contributions.

the assumption of a time harmonic dependence e−ıωt [28]. From Maxwell’s curl
equations, this implies a magnetic field Hd0

dip =−ı∇×Ed0
dip/ωµ0.

The electromagnetic wave [Ed0
dip(r),H

d0
dip(r)]e

−ıωt impinges on a spherical parti-
cle centered at r = 0, with radius b, and it is scattered to the far field for r > b. From
the boundary conditions, one can show that the scattered electric field Ed0

sca(r) can be
obtained from Eq. (1.31) by simply replacing coefficients (α`m,β`m) with (a`m,b`m)
and the function j` with h(1)` [18, 56, 59, 62]. This procedure leads to

Ed0
sca(r,θ ,ϕ) =

∞

∑̀
=1

`

∑
m=−`

1
`(`+1)

{
a`m

1
k

∇×
[
h(1)` (kr)L̂Y`m(θ ,ϕ)

]

+b`mh(1)` (kr)L̂Y`m(θ ,ϕ)
}
, (1.34)

a`m = −α`ma`, (1.35)
b`m = −β`mb`, (1.36)

where α`m and β`m are given by Eqs. (1.32) and (1.33), respectively. The coefficients
a` and b`, which encode the dependence on the sphere parameters, are the usual
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electric and magnetic Lorenz-Mie coefficients, respectively, given by Eqs. (1.3) and
(1.4).

Using the Green’s tensor formalism [18, 56], the solution for the total decay rate
associated with an electric dipole moment d0 can be expressed as

Γ d0
total
Γ0

= 1+
6πε0

k3d2
0

Im
[
d0 ·Ed0

sca(r
′)
]
, (1.37)

where the scattered electric field contains the information of the environment in
which the optical emitter is embedded. Equation (1.37) takes into account both
radiative and non-radiative contributions, and provides a fully classical computa-
tional method to derive a quantum property of a system [18, 57]. Physically, it is de-
rived from the total power delivered by the optical emitter to the environment [27],
Ptotal =−ωIm{d0 · [Ed0

dip(r
′)+Ed0

sca(r′)]}/2.
Now, let us now consider two basic orientations for the electric dipole moment

in spherical geometry:

d⊥0 = d0êr , d||0 =
d0√

2

(
êθ + êϕ

)
, (1.38)

where d||0 is chosen for convenience [16]. Without loss of generality, we set the
position of the dipole emitter along the positive z-axis, i.e., r′ = z > b and θ ′ =
ϕ ′ = 0. As a result, since Pm

` (cosθ ′) ∝ sinm θ ′ as θ ′→ 0, only the terms with m =
0,±1 contribute to the sum in Eqs. (1.31) and (1.34) [56]. Substituting Eq. (1.34)
into Eq. (1.37) for θ ′ = ϕ ′ = 0, we obtain the total decay rates associated with a
dipole moment oriented orthogonal (d⊥0 ) or tangential (d||0) to the spherical surface,
respectively:

Γ⊥total(kr′)
Γ0

= 1− 3
2

∞

∑̀
=1
`(`+1)(2`+1)Re



a`

[
h(1)` (kr′)

kr′

]2


 , (1.39)

Γ ||total(kr′)
Γ0

= 1− 3
4

∞

∑̀
=1
(2`+1)Re

{
a`

[
ξ ′`(kr′)

kr′

]2

+b`h
(1)
` (kr′)2

}
. (1.40)

For an electric dipole moment with arbitrary orientation in relation to the spherical
surface, one can assume the spatial mean [63]: Γtotal = (Γ⊥total +2Γ ||total)/3.

Equations (1.39) and (1.40) contain both radiative and non-radiative contribu-
tions to the spontaneous-emission rate [27]. It is convenient to investigate these two
contributions separately as they play different roles in near- and far-field interac-
tions [64]. Indeed, for plasmonic spheres, the non-radiative contribution is related
to an efficient coupling to surface plasmon modes in the near field. Conversely, the
radiative decay rate is associated with the excitation of Mie resonances in the far
field.
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In classical electrodynamics, the radiative decay rate Γ d0
rad /Γ0 of a dipole emitter

at the position r′ is calculated via the total radiated power in the presence of the
sphere normalized to free space [59]. It can be calculated by integrating the radial
component of the Poynting vector at the far field (r→ ∞): Prad = r2 ∫ dΩS · êr ∝
r2 ∫ 1
−1 d(cosθ)

∫ 2π
0 dϕ|Ed0

dip(r)+Ed0
sca(r)|2, where Ed0

dip(r) and Ed0
sca(r) are defined in

Eqs. (1.31) and (1.34), respectively. As a final result, we have

Γ⊥rad(kr′)
Γ0

=
3
2

∞

∑̀
=1
`(`+1)(2`+1)

∣∣∣∣∣
j`(kr′)−a`h

(1)
` (kr′)

kr′

∣∣∣∣∣

2

, (1.41)

Γ ||rad(kr′)
Γ0

=
3
4

∞

∑̀
=1
(2`+1)

[∣∣∣∣
ψ ′`(kr′)−a`ξ ′`(kr′)

kr′

∣∣∣∣
2

+
∣∣∣ j`(kr′)−b`h

(1)
` (kr′)

∣∣∣
2
]
. (1.42)

For a detailed calculation of these expressions by using the Poynting vector, the in-
terested reader is referred to Ref. [18]. A different approach is discussed by Arruda
et al. [16] using the Lorenz-Mie theory, in which the radiative decay rate is calcu-
lated straightforwardly from the intensity enhancement factor. Indeed, one can ver-
ify that Γ d0

rad (r
′)/Γ0 = 〈|d0 · [Ein(r′)+Esca(r′)]|2〉/〈|d0 ·Ein(r′)|2〉, where Ein(r) and

Esca(r) are given by Eqs. (1.1) and (1.2), respectively, and 〈· · ·〉= (1/4π)
∫ 4π

0 Ω(· · ·)
is the angle average [16]. Once again, assuming the dipole has no defined orientation
in space, one has from Eqs. (1.41) and (1.42) the spatial mean Γrad =(Γ⊥rad+2Γ ||rad)/3.
In addition, by subtracting Eqs. (1.41) and (1.42) from Eqs. (1.39) and (1.40), re-
spectively, we finally obtain the non-radiative decay rates

Γ⊥nrad(kr′)
Γ0

=
3
2

∞

∑̀
=1
`(`+1)(2`+1)

∣∣∣∣∣
h(1)` (kr′)

kr′

∣∣∣∣∣

2

Re
(
a`−|a`|2

)
, (1.43)

Γ ||nrad(kr′)
Γ0

=
3
4

∞

∑̀
=1
(2`+1)Re

{∣∣∣∣
ξ ′`(kr′)

kr′

∣∣∣∣
2 (

a`−|a`|2
)

+
∣∣∣h(1)` (kr′)

∣∣∣
2 (

b`−|b`|2
)
}
. (1.44)

Although we have been discussing the case of an optical emitter with electric
dipole radiation in the vicinity of a sphere, analogous expressions can be readily
obtained for a magnetic dipole transition by interchanging a` with b` [18].
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1.3.2 Decay rates and radiation efficiency near a plasmonic
nanoshell

The theory presented above is general and can be applied to arbitrary non-optically
active spheres and single dipole emitters (quantum dots, atoms or molecules) in
the weak coupling regime [63, 64, 65]. Here, we consider a realistic system for
a dipole emitter near a plasmonic core-shell sphere composed of a silicon (Si)
core and a silver (Ag) nanoshell. We are interested in a configuration where the
presence of a dielectric core strongly modifies the scattering response of a plas-
monic nanoshell [14, 35, 66], ultimately leading to unconventional Fano reso-
nances [16, 36]. The optical and geometric parameters are the same of Sec. 1.2:
a dielectric (Si) core of refractive index n1 = 3.5 and radius a = 60 nm coated with
a plasmonic (Ag) nanoshell of radius b = 90 nm.

Figure 1.6 shows the Purcell factor Γ /Γ0 related to a single dipole emitter near
a plasmonic shell as a function of the distance ∆r for two basic dipole moment ori-
entations: orthogonal [Fig. 1.6(a)] or parallel [Fig. 1.6(b)] to the spherical surface.
Based on the scattering cross section σsca plotted in Fig. 1.2, we investigate three
main frequencies for light emission: dipole scattering resonance (ω ≈ 0.170ωp),
Fano dip (ω ≈ 0.175ωp), and quadrupole scattering resonance (ω ≈ 0.208ωp),
where ωp is the Ag plasmon frequency.

As can be observed, in the vicinity of the plasmonic nanoshell (∆r→ 0), non-
radiative channels always dominate over far-field radiative processes, leading to
Γ⊥(||)rad � Γ⊥(||)nrad . In the present system, this effect is mainly associated with ohmic
losses on the plasmonic surface. However, as the distance ∆r between emitter and
nanoshell increases, the non-radiative decay rate decreases faster than the radiative
one. At the far field (∆r� b), this results in Γ⊥(||)rad → Γ0 and Γ⊥(||)nrad → 0.

There are some interesting features in Fig. 1.6 that can be explained by light scat-
tering theory. For instance, the non-radiative decay rate Γ⊥(||)nrad associated with the
quadrupole scattering resonance (|a2|2) is greater than that one related to the dipole
scattering resonance (|a1|2). This is an expected result, since the electric quadrupole
scattering channel (`= 2) is mainly associated with absorption, see Fig. 1.2. In addi-
tion, note that the light emission at the Fano dip frequency leads to Γ⊥(||)rad ≈ Γ0 irre-
spective of the distance ∆r between emitter and sphere. Indeed, for a non-dissipative
nanoshell, the net spontaneous-emission rate can be identically reduced to its vac-
uum value depending on the geometrical parameters of the plasmonic coating [25].
This effect is explained by the plasmonic cloaking of the dielectric sphere [32],
since σsca ≈ 0 at the Fano dip (ω ≈ 0.175ωp). However, observe that the plasmonic
cloaking is effective only from a certain finite distance ∆r of the nanoshell due to
unavoidable non-radiative contributions of higher order dark modes (` > 1) at the
near field.

To clarify the role of radiative and non-radiative contributions on the spontaneous-
emission rate of an optical emitter, it is convenient to define the radiation efficiency
of the light emission. The radiation efficiency Q of an emitter with negligible inter-
nal losses is defined as [27]
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Fig. 1.6 Spontaneous decay rates Γ of an optical dipole emitter near a (Si) core-shell (Ag)
nanosphere in free space as a function of the distance ∆r between emitter and sphere. The di-
electric core has radius a = 60 nm and refractive index n1 = 3.5, and the Ag shell has radius
b = 90 nm and electric permittivity ε2 = εAg(ω) [Eq. (1.22)]. The decay rates are normalized by
the corresponding decay rate Γ0 in vacuum. We consider three main frequencies obtained from
Fig. 1.2: dipole scattering resonance (ω ≈ 0.170ωp), Fano dip (ω ≈ 0.175ωp), and quadrupole
resonance (ω ≈ 0.208ωp). The plots show radiative (Γrad) and non-radiative (Γnrad) decay rates
associated with a point dipole oriented orthogonal (a) or parallel (b) to the spherical surface as a
function of ∆r. The non-radiative decay rates dominate for ∆r ≈ 0 (Γrad� Γnrad). The inset shows
that Γrad → Γ0 and Γnrad → 0 for ∆r� b (far field). At the Fano dip, Γrad ≈ Γ0 irrespective of ∆r
and dipole orientation.
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Fig. 1.7 Radiation efficiency Q = Γrad/Γtotal associated with a dipole emitter in the vicinity of a
plasmonic nanoshell in free space. The system is composed of a (Si) core-shell (Ag) nanosphere
with inner radius a = 60 nm and outer radius b = 90 nm. The plots are calculated for an electric
dipole moment d0 oriented orthogonal (Q⊥) or tangential (Q||) to the nanoshell as a function of dis-
tance ∆r for three frequencies obtained from Fig. 1.2: dipole scattering resonance (ω ≈ 0.170ωp,
solid and dash-dotted green lines), Fano dip (ω ≈ 0.175ωp, solid and dotted blue lines), and
quadrupole resonance (ω ≈ 0.208ωp, solid and dashed red lines). For ∆r ≈ 0 or ∆r � b, one
has Q⊥(||)→ 0 or Q⊥(||)→ 1, respectively.

Qd0(kr′) =
Γ d0

rad (kr′)

Γ d0
rad (kr′)+Γ d0

nrad(kr′)
, (1.45)

where the corresponding radiative and non-radiative decay rates are calculated in
Sec. 1.3.1. Using Eq. (1.45), we plot in Fig. 1.7 the competition between far-field
radiation and ohmic losses on the surface of the plasmonic nanoshell as a function
of ∆r. As expected, the radiation efficiency Q for both dipole moment orientations
vanishes at the plasmonic surface (∆r ≈ 0). In particular, note that Q⊥ > Q|| in
general, which means a more efficient coupling between the electric dipole moment
d0 oriented orthogonal to the spherical surface than the parallel orientation. Among
the chosen light emission frequencies, the lowest values of efficiency at the near
field is obtained for the quadrupole scattering resonance frequency ω ≈ 0.208ωp.
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1.3.3 The Purcell effect and Fano resonances in plasmonic
nanoshells

The influence of Fano resonances on the Purcell factor is revealed when one con-
siders Γ /Γ0 as a function of the light emission frequency ω [27]. Recently, it has
been analytically demonstrated that the fluorescence enhancement of dipole emitter
near a plasmonic nanoshell as a function of the excitation frequency also exhibits
an asymmetric Fano line shape [16]. Here, we use the same arguments applied in
Ref. [16] to describe the Fano effect on the Purcell factor of a dipole emitter in
close proximity of plasmonic nanoshells. We focus only on the radiative contribu-
tion since we are interested in the dipole mode (`= 1) excited in the sphere, which
is related to the unconventional Fano resonance. For the non-radiative contribution
Γ⊥(||)nrad , the quadrupole mode (` = 2) excited in the particle dominates the spectrum
with a Lorentzian line shape, whereas higher order dark modes (` > 2) contribute to
Γ⊥(||)nrad in the near field, leading to a broad spectral line (Q→ 0, see Fig. 1.7). This
influence of higher dark modes is the main reason why the dipole approximation
fails to describe near-field interactions between an optical emitter and a plasmonic
nanosphere [54]. Conversely, since Γ⊥(||)rad is related to the far-field radiation, we can
restrict our discussion to ` = 1 for kb < 1 and k∆r < 1 in the vicinity of the dipole
scattering resonance (|a1|2). All the numerical calculations, however, are performed
with the exact expressions derived in Sec. 1.3.1.

In Fig. 1.8, we plot Γ⊥rad and Γ ||rad as a function of the light emission frequency ω ,
and for several distances ∆r between emitter and plasmonic surface. By comparing
Fig. 1.8(a) and Fig. 1.8(b), we see clearly that Γ⊥rad is one order of magnitude greater
than Γ ||rad, confirming that the coupling between emitter and plasmonic nanoshell is
stronger for the orthogonal orientation of the dipole moment. More importantly, on
one hand, the plots of Γ⊥rad exhibit Fano resonances for both dipole (ω ≈ 0.170ωp)
and quadrupole (ω ≈ 0.208ωp) modes irrespective of ∆r. On the other hand, the
plots of Γ ||rad exhibit symmetric Lorentzian profiles for ∆r� b and, as ∆r increases,
it develops to a Fano line shape.

As discussed by Arruda et al. [16], the Lorentzian line shape observed in Γ ||rad(ω)
in the near field, that changes into a Fano line shape in the far field, is a consequence
of the core-shell geometry. Physically, the electric dipole moment d||0 associated with
the optical emitter induces an oppositely directed dipole moment on the plasmonic
nanoshell surface, with almost the same amplitude [58]. This interaction cancels
out the broad dipole mode excited in the plasmonic sphere, but does not cancel out
the narrow dipole mode (` = 1) at the plasmonic inner shell surface. According to
Refs. [15, 16], we can rewrite the electric Lorenz-Mie coefficient a`, Eq. (1.3), as

a` = aPEC
` −

[
ψ ′`(n2kb)g`−χ ′`(n2kb)w`

]

n2ξ ′`(kb)
, (1.46)
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Fig. 1.8 Radiative decay rates Γrad of a dipole emitter near a (Si) core-shell (Ag) nanoparticle as
a function of the light emission frequency ω . We consider several distances ∆r between emitter
and coated sphere, which has inner radius a = 60 nm and outer radius b = 90 nm. (a) The plot
shows the radiative decay rate Γ⊥rad of a dipole emitter with orthogonal orientation in relation to
the spherical shell. For ω ≈ 0.170ωp (dipole scattering resonance) and ω ≈ 0.208ωp (quadrupole
scattering resonance), one has asymmetric Fano line shapes irrespective of the distance ∆r. (b) The
plot shows Γ ||rad of a dipole emitter with tangential orientation in relation to the spherical surface.
For ∆r ≈ 0, one has symmetric Lorentzian line shapes. From ∆r > 10 nm, these Lorentzian line
shapes change to Fano line shapes.
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where g` and w` are the Lorenz-Mie coefficients of electromagnetic fields within the
plasmonic shell, Eqs. (1.14) and (1.16), respectively.

The first term in Eq. (1.46) is the coefficient of a perfectly electric conducting
(PEC) sphere (n2→ ∞): a`→ aPEC

` ≡ ψ ′`(kb)/ξ ′`(kb) [28]. Here, this coefficient is
related to the broad electric dipole mode (` = 1), while the second term accounts
for the narrow electric dipole mode related to the plasmonic inner shell surface. By
inspection of Eqs. (1.41) and (1.42), it is easily confirmed that the term aPEC

1 in
Eq. (1.46) is canceled out for r′ = b and ` = 1 only in Γ ||rad, leading to a Lorentzian
line shape response as a function of frequency. As the distance between the dipole
and the nanoshell becomes greater, the influence of the broad dipole mode in the
Purcell factor increases, leading to a Fano resonance.
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Fig. 1.9 Radiative decay rates related to an optical emitter located at ∆r = 40 nm from a (Si) core-
shell (Ag) nanoparticle with inner radius a = 60 nm and outer radius b = 90 nm. Both orthogonal
(Γ⊥rad) and parallel (Γ ||rad) orientations of the electric dipole moment d0 in relation to the spherical
surface present a Fano ressonance around ω ≈ 0.170ωp, where ωp is the Ag plasmon frequency.
The corresponding Fano asymmetry parameters of the Purcell factors are q⊥P ≈−1.2 and q||P ≈ 2.0.

In Fig. 1.9, we compare Γ⊥rad and Γ ||rad for ∆r = 40 nm. Both profiles present Fano
line shapes, with Fano asymmetry parameters q⊥P and q⊥P with opposite sign. These
Fano parameters are related to the unconventional Fano resonance in the scattering
cross section σsca, where qLM = χ ′1(kb)/ψ ′1(kb) for ` = 1. In particular, observe in
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24 Tiago José Arruda et al.

0 10 20 30 40 50 60
-10

0

10

20

30

40

50

20 30 40 50 60
-1.5

0.0

1.5

3.0

 

r (nm)

 

Fa
no

 p
ar

am
et

er
 q

 

r (nm)

 q | 

P

 q||

P

Fig. 1.10 Fano asymmetry parameters associated with the Purcell factor of an optical emitter in the
vicinity of a (Si) core-shell (Ag) nanoparticle with light emission frequency ω = 0.170ωp (dipole
scattering resonance). The coated sphere has inner radius a = 60 nm and outer radius b = 90 nm.
The Fano parameters q⊥P and q||P are calculated from Eqs. (1.50) and (1.51) as a function of the
distance ∆r between emitter and spherical surface. For the electric dipole moment d0 oriented
tangential to the spherical surface, we have q||P → ∞ as ∆r→ 0. The inset shows that q||P is finite
for ∆r > 20 nm and has opposite sign in relation to q⊥P . These curves can be used to fit the plots in
Fig. 1.8.

Fig. 1.9 that the fitted Fano curves are better for low frequencies (large wavelengths).
Assuming the dipole approximation, i.e., kr� 1 and kb� 1, we obtain

Γ⊥(||)rad (ω)

Γ0
≈ F⊥(||)1





[
ζ ′(ω)

ζ ′′(ω)+1
+q⊥(||)P

]2

+

[
ζ ′′(ω)

ζ ′′(ω)+1

]2

[
ζ ′(ω)

ζ ′′(ω)+1

]2

+1




, (1.47)

where the prefactors for the two electric dipole orientations are

F⊥1 =
9 [ j1(kr′)qLM + y1(kr′)]2

(kr′)2(1+q2
LM)

, (1.48)
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F ||1 =
9 [ψ ′1(kr′)qLM−χ ′1(kr′)]2

4(kr′)2(1+q2
LM)

; (1.49)

the corresponding Fano asymmetry parameters are

q⊥P =
1

1+ζ ′′(ω)

[
y1(kr′)qLM− j1(kr′)
j1(kr′)qLM + y1(kr′)

]
, (1.50)

q||P = − 1
1+ζ ′′(ω)

[
χ ′1(kr′)qLM +ψ ′1(kr′)
ψ ′1(kr′)qLM−χ ′1(kr′)

]
, (1.51)

where ζ (ω) is defined in Eq. (1.26) and r′ = b+∆r.
From Eqs. (1.47)–(1.51), it becomes clear that only |q||P|→∞ when r′→ b, which

leads to a Lorentzian line shape in the near field for Γ ||rad. This fact is shown explicitly
in Fig. 1.10, where we plot the corresponding Fano parameters that fit the plots in
Fig. 1.8 by using Eqs. (1.50) and (1.51). In particular, it is worth mentioning that
Eqs. (1.50) and (1.51) can be easily generalized to an arbitrary `, since they are not
approximate expressions.

1.4 Conclusion

Based on the complete Lorenz-Mie theory, we have investigated the role of Fano
resonances in plasmonic core-shell spheres and their influence on the spontaneous-
emission rate of optical emitters in close proximity of a nanoshell. We have briefly
discussed the appearance of conventional and unconventional Fano resonances in
the light scattering by single-layered spheres. Both resonances arise from the inter-
ference between electromagnetic modes excited in the particle and can be associ-
ated with the off-resonance field enhancement and saddle points in the energy flow
around the particle. For an optical emitter with dipole moment oriented tangentially
to a plasmonic nanoshell, we have obtained a symmetric Lorentzian line shape re-
sponse in the near field that changes into a Fano resonance in the far field, with Fano
asymmetry parameter of opposite sign compared to the dipole moment oriented nor-
mally to the spherical surface. This effect has been explained by the different role
played by the induced electric dipole moment in the plasmonic nanoshell for both
dipole moment orientations. More importantly, we have unveiled the relation be-
tween Fano resonances in light scattering and the Purcell effect. These analytical
results shed light on a fundamental problem of Fano-like resonances in nanoplas-
monics, and they may have interesting applications for enhancing and controlling
the light emission and absorption of optical dipole emitters near metal-based nanos-
tructures.
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